The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback.
نویسندگان
چکیده
Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments.
منابع مشابه
The Optimal Neural Strategy for a Stable Motor Task Requires a Compromise 4 between Level of Muscle Co-contraction and Synaptic Gain of Afferent
20 Increasing joint stiffness by co-contraction of antagonist muscles or compensatory reflexes are neural 21 strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, 22 however, may compromise steadiness as elements of the afferent input to motor pools innervating antagonist 23 muscles are inherently negatively correlated. Consequently, a high affer...
متن کاملEffects of cognitive functions on feedback request strategy and learning of a perceptual motor task
Taking individuals' cognitive abilities into consideration can play an important role in the initial stages of learning motor skills. So, the purpose of the present study was to investigate the effect of cognitive functions on feedback request strategy and learning of a perceptual motor task. A number of 60 university male students with a mean age of 22/4 years (SD = 1/99) were selected through...
متن کاملNeural correlates of task-related changes in physiological tremor.
Appropriate control of muscle contraction requires integration of command signals with sensory feedback. Sensorimotor integration is often studied under conditions in which muscle force is controlled with visual feedback. While it is known that alteration of visual feedback can influence task performance, the underlying changes in neural drive to the muscles are not well understood. In this stu...
متن کاملCentral common drive to antagonistic ankle muscles in relation to short-term cocontraction training in nondancers and professional ballet dancers.
Optimization of cocontraction of antagonistic muscles around the ankle joint has been shown to involve plastic changes in spinal and cortical neural circuitries. Such changes may explain the ability of elite ballet dancers to maintain a steady balance during various ballet postures. Here we investigated whether short-term cocontraction training in ballet dancers and nondancers leads to changes ...
متن کاملRole of cocontraction in arm movement accuracy.
Cocontraction (the simultaneous activation of antagonist muscles around a joint) provides the nervous system with a way to adapt the mechanical properties of the limb to changing task requirements-both in statics and during movement. However, relatively little is known about the conditions under which the motor system modulates limb impedance through cocontraction. The goal of this study was to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 114 3 شماره
صفحات -
تاریخ انتشار 2015